Quantum separability, time reversal and canonical decompositions

نویسندگان

  • Anna Sanpera
  • Rolf Tarrach
  • Guifré Vidal
چکیده

We propose an interpretation of quantum separability based on a physical principle: local time reversal. It immediately leads to a simple characterization of separable quantum states that reproduces results known to hold for binary composite systems and which thereby is complete for low dimensions. We then describe a constructive algorithm for finding the canonical decomposition of separable and non separable mixed states of dimensions 2x2 and 2x3. 03.65.Bz, 42.50.Dv, 89.70.+c Typeset using REVTEX

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Separability condition for composite systems of distinguishable fermions

We study characterization of separable (classically correlated) states for composite systems of distinguishable fermions. In the computation of entanglement formation for such systems where located subsystems are coupled by the canonical anticommutation relations (not by tensor product), the state decompositions to be taken should respect the univalence superselection rule. (The usual entanglem...

متن کامل

Time reversal and n-qubit canonical decompositions

On pure states of n quantum bits, the concurrence entanglement monotone returns the norm of the inner product of a pure state with its spin-flip. The monotone vanishes for n odd, but for n even there is an explicit formula for its value on mixed states, i.e., a closed-form expression computes the minimum over all ensemble decompositions of a given density. For n even a matrix decomposition n=k1...

متن کامل

Infinite-dimensional versions of the primary, cyclic and Jordan decompositions

The famous primary and cyclic decomposition theorems along with the tightly related rational and Jordan canonical forms are extended to linear spaces of infinite dimensions with counterexamples showing the scope of extensions.

متن کامل

Reduction criterion for separability

We introduce a separability criterion based on the positive map #:$ ̃(Tr $)!$ , where $ is a trace-class Hermitian operator. Any separable state is mapped by the tensor product of # and the identity into a nonnegative operator, which provides a simple necessary condition for separability. This condition is generally not sufficient because it is vulnerable to the dilution of entanglement. In the ...

متن کامل

Canonical Form and Separability of PPT States on Multiple Quantum Spaces

By using the “subtracting projectors” method in proving the separability of PPT states on multiple quantum spaces, we derive a canonical form of PPT states in C1 ⊗CK2 ⊗· · ·⊗CKm ⊗CN composite quantum systems with rank N , from which a sufficient separability condition for these states is presented. As the key resource in quantum information processing [1], quantum entanglement has resulted in t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1998